Analyzing Dunford Property for Operators Satisfying Sr2 TqSr2 = S2r

Authors

  • Victor Wanjala Maasai Mara University Author

DOI:

https://doi.org/10.51867/asarev.maths.2.1.8

Keywords:

SVEP property, Dunford’s property (C), Local spectral theory

Abstract

In this study, we introduce a new class of operators defined by the properties S^(r/2) T^q S^(r/2) = S^(2r) and T^(r/2) S^q T^(r/2) = T^(2r) for integers r > q ≥ 0. The main objective is to investigate the Dunford property, commonly referred to as property (C), for the operators S^(r/2) T^q and T^q S^(r/2) under the condition that S^(2r) ∈ B(X). This research expands the framework of operator theory by introducing new operator classes through operator identities and extending existing ones. The motivation stems from the central role of operator equations in functional analysis and operator theory, where many fundamental problems in mathematics and physics can be reformulated as operator equations, yet certain classes remain insufficiently explored. The methodology involves an iterative analysis of local spectral subspaces and their interactions under the given operator identities. The results demonstrate that the introduced classes of operators satisfy the single-valued extension property (SVEP) and possess property (Q). Moreover, it is established that if S^(3r/2) has property (C), then both S^(r/2) T^q and T^q S^(r/2) inherit this property. These findings enrich the theory with broader generalizations and open avenues for further exploration of spectral properties and applications in mathematical and scientific contexts.

References

Jinta, J., George, B., Thumbakara, R. K., & George, S. P. (2024). Understanding normal and restricted normal products in soft directed graphs. Journal of the Nigerian Society of Physical Sciences, 6, 2156. https://doi.org/10.46481/jnsps.2024.2156

Jinta, J., Thumbakara, R. K., Mashale, J. T., George, B., & George, S. P. (2025). Homomorphic and restricted homomorphic products of soft graphs. Journal of the Nigerian Society of Physical Sciences, 7, 2391. https://doi.org/10.46481/jnsps.2025.2391

Shen, J. (2018). The spectral properties of [m]-complex symmetric operators. Journal of Inequalities and Applications, 2018, 209. https://doi.org/10.1186/s13660-018-1800-1

Laursen, K. B., & Neumann, M. M. (2000). An introduction to local spectral theory. London Mathematical Society Monographs (New Series). Clarendon Press. https://doi.org/10.1093/oso/9780198523819.002.0003

Salah, M. (2012). Bishop’s property, SVEP, and Dunford property. Electronic Journal of Linear Algebra, 23, 523. https://doi.org/10.13001/1081-3810.1537

Hadji, S., & Zguitti, H. (2021). Back to the common spectral properties of operators satisfying AᵏBᵏAᵏ = Aᵏ⁺¹ and BᵏAᵏBᵏ = Bᵏ⁺¹. Asian-European Journal of Mathematics, 14, 2150177. https://doi.org/10.1142/S1793557121501771

Wurichaihu, B., & Chen, A. (2022). On local spectral properties of extended Hamilton operators. Filomat, 36, 3675. https://doi.org/10.2298/FIL2211675B

Elvis, A., Soto, J., & Rosas, E. (2023). Study of the property (bz) using local spectral theory methods. Arab Journal of Basic and Applied Sciences, 30, 665. https://doi.org/10.1080/25765299.2023.2278217

Elvis, A., Lima, L., & Sanabria, J. (2024). The property (EA) and local spectral theory. arXiv preprint, arXiv:2402.10170. https://doi.org/10.48550/arXiv.2402.10170

Mhamed, E., & Saber, S. (2024). Maps preserving the local spectral subspace of the Jordan product of operators. Filomat, 38, 4611. https://www.pmf.ni.ac.rs/filomat-content/2024/38-13/38-13-13-20108.pdf

Macias, J., Jativa, A., Bareto, J., & Aponte, E. (2025). A generalization of Zariouh’s property (gaz) through local spectral theory. Matematica Espol-Fcnm Journal, 23, 13. https://www.revistas.espol.edu.ec/index.php/matematica/issue/archive

Bermúdez, T., Martinón, A., & Müller, V. (2024). Local spectral properties of m-isometric operators. Journal of Mathematical Analysis and Applications, 530, 127717. https://doi.org/10.1016/j.jmaa.2023.127717

Barens, B. A. (1998). Common operator properties of the linear operators RS and SR. Proceedings of the American Mathematical Society, 126, 1055. https://doi.org/10.1090/S0002-9939-98-04218-X

Lin, C., Yan, Z., & Ruan, Y. (2002). Common properties of operators RS and SR and p-hyponormal operators. Integral Equations and Operator Theory, 43, 313. https://doi.org/10.1007/BF01255566

Benhida, C., & Zerouali, E. H. (2006). Local spectral theory of linear operators RS and SR. Integral Equations and Operator Theory, 54, 1. https://doi.org/10.1007/s00020-005-1375-3

Yoo, J. K. (2008). A note on linear operators RS and SR. Far East Journal of Mathematical Sciences, 28, 603. https://www.pphmj.com/abstract/3152.htm

Aiena, P. (2004). Fredholm and local spectral theory, with applications to multipliers. Springer. https://doi.org/10.1007/1-4020-2525-4

Aiena, P., & Gonzalez, M. (2011). On the Dunford property (C) for bounded linear operators RS and SR. Integral Equations and Operator Theory, 70, 561. https://doi.org/10.1007/s00020-011-1875-2

Benhida, C., & Zerouali, E. H. (2007). Back to RS–SR spectral theory. Banach Center Publications, 75, 55. https://doi.org/10.4064/bc75-0-4

Schmoeger, C. (2005). On the operator equations ABA = A² and BAB = B². Publications de l’Institut Mathématique, 78, 127. https://doi.org/10.2298/pim0578127s

Schmoeger, C. (2006). Common spectral properties of linear operators A and B such that ABA = A² and BAB = B². Publications de l’Institut Mathématique, 79, 109. https://doi.org/10.2298/PIM0693109S

Zeng, Q. P., & Zhong, H. J. (2013). New results on common properties of the bounded linear operators RS and SR. Acta Mathematica Sinica (English Series), 29, 1871. https://doi.org/10.1007/s10114-013-1758-3

Zeng, Q. P., & Zhong, H. J. (2014). Common properties of bounded linear operators AC and BA: Local spectral theory. Journal of Mathematical Analysis and Applications, 414, 553. https://doi.org/10.1016/j.jmaa.2014.01.021

Tajmouati, A., Bakkali, A. E., & Ahmed, M. B. M. (2015). Common local spectral properties of bounded linear operators AT and SA such that BSA = ATB. International Journal of Mathematical Analysis, 9, 183. https://doi.org/10.12988/ijma.2015.411347

Duggal, B. P. (2011). Operator equations ABA = A² and BAB = B². Functional Analysis, Approximation and Computation, 3, 9. http://operator.pmf.ni.ac.rs/www/pmf/publikacije/faac/2011/3-1-2011/faac3-1-2.pdf

Triolo, S. (2020). Local spectral theory for R and S satisfying RⁿSRⁿ = Rʲ. Axioms, 9, 120. https://doi.org/10.3390/axioms9040120

Pietro, A., & Gonzalez, M. (2020). Local spectral theory for operators R and S satisfying RSR = R². Extracta Mathematicae, 9, 37. https://doi.org/10.3390/axioms9040120

Pietro, A., & Triolo, S. (2019). Some remarks on the spectral properties of Toeplitz operators. Mediterranean Journal of Mathematics, 16, 135. https://doi.org/10.1007/s00009-019-1397-8

Downloads

Published

2025-10-13

How to Cite

Wanjala, V. (2025). Analyzing Dunford Property for Operators Satisfying Sr2 TqSr2 = S2r. African Scientific Annual Review, 2(1), 117-131. https://doi.org/10.51867/asarev.maths.2.1.8

Share